8,278 research outputs found

    ORGB: Offset Correction in RGB Color Space for Illumination-Robust Image Processing

    Full text link
    Single materials have colors which form straight lines in RGB space. However, in severe shadow cases, those lines do not intersect the origin, which is inconsistent with the description of most literature. This paper is concerned with the detection and correction of the offset between the intersection and origin. First, we analyze the reason for forming that offset via an optical imaging model. Second, we present a simple and effective way to detect and remove the offset. The resulting images, named ORGB, have almost the same appearance as the original RGB images while are more illumination-robust for color space conversion. Besides, image processing using ORGB instead of RGB is free from the interference of shadows. Finally, the proposed offset correction method is applied to road detection task, improving the performance both in quantitative and qualitative evaluations.Comment: Project website: https://baidut.github.io/ORGB

    Computational genomics of regulatory elements and regulatory territories

    Get PDF
    Whole genome comparison of metazoan genomes reveals extremely high level of noncoding conservation over tens to hundreds of base pairs across distant species. These sequences are termed as conserved noncoding elements (CNEs). Arrays of conserved noncoding elements that span the loci of developmental regulatory genes and their span defines regulatory genomic blocks (GRBs). CNEs are currently known to be involved in transcriptional regulation and development as long-range enhancers. However, no molecular mechanism can yet explain their exceptional degree of conservation. As a first step towards the genome-wide study of these elements, I developed two R/Bioconductor packages CNEr and TFBSTools, to detect and analyse regulatory elements. Next, I designed a novel CNE detection pipeline for duplicated regions in the ameiotic Adineta vaga genome. Identification of CNEs in this genome suggests that the principal function of CNEs is regulation of developmental gene expression rather than copy number sensing. In addition, I performed a de novo genome annotation of European common carp Cyprinus carpio. This genome stands as an ideal candidate for comparative study of zebrafish genome. Its analysis revealed a wealth of previously undetected fish regulatory elements and their unexpectedly high level of conservation between the two genomes. Finally, I presented a computational method for the identification of GRB boundaries and prediction of the corresponding target genes under long-range regulation. The predicted target genes are implicated in developmental, transcriptional regulation and axon guidance. The disruption of regulation of these target genes is likely to cause complex diseases, including cancer. The GRB boundaries and predicted target genes are valuable resource for investigating developmental regulation and interpreting genome-wide association studies.Open Acces

    \u3cem\u3eHP-DAEMON\u3c/em\u3e: \u3cem\u3eH\u3c/em\u3eigh \u3cem\u3eP\u3c/em\u3eerformance \u3cem\u3eD\u3c/em\u3eistributed \u3cem\u3eA\u3c/em\u3edaptive \u3cem\u3eE\u3c/em\u3energy-efficient \u3cem\u3eM\u3c/em\u3eatrix-multiplicati\u3cem\u3eON\u3c/em\u3e

    Get PDF
    The demands of improving energy efficiency for high performance scientific applications arise crucially nowadays. Software-controlled hardware solutions directed by Dynamic Voltage and Frequency Scaling (DVFS) have shown their effectiveness extensively. Although DVFS is beneficial to green computing, introducing DVFS itself can incur non-negligible overhead, if there exist a large number of frequency switches issued by DVFS. In this paper, we propose a strategy to achieve the optimal energy savings for distributed matrix multiplication via algorithmically trading more computation and communication at a time adaptively with user-specified memory costs for less DVFS switches, which saves 7.5% more energy on average than a classic strategy. Moreover, we leverage a high performance communication scheme for fully exploiting network bandwidth via pipeline broadcast. Overall, the integrated approach achieves substantial energy savings (up to 51.4%) and performance gain (28.6% on average) compared to ScaLAPACK pdgemm() on a cluster with an Ethernet switch, and outperforms ScaLAPACK and DPLASMA pdgemm() respectively by 33.3% and 32.7% on average on a cluster with an Infiniband switch

    Improved lumped models for transient heat conduction in a slab with temperature-dependent thermal conductivity

    Get PDF
    This work reports improved lumped-parameter models for transient heat conduction in a slab with temperature-dependent thermal conductivity. The improved lumped models are obtained through two point Hermite approximations for integrals. For linearly temperature-dependent thermal conductivity, it is shown by comparison with numerical solution of the original distributed parameter model that the higher order lumped model (H1;1=H0;0 approximation) yields significant improvement of average temperature prediction over the classical lumped model. A unified Biot number limit depending on a single dimensionless parameter b is given both for cooling and heating processes.Indisponível

    Improved lumped models for combined convective and radiative cooling of a wall

    Get PDF
    Improved lumped parameter models are developed for the transient heat conduction of a wall subjected to combined convective and radiative cooling. The improved lumped models are obtained through two point Hermite approximations for integrals. It is shown by comparison with numerical solution of the original distributed parameter model that the higher order lumped model (H1;1=H0;0 approximation) yields significant improvement of average temperature prediction over the classical lumped model.Indisponível
    • …
    corecore